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Abstract

Popular algorithms for switching branches at a bifurcation point of strongly non-linear oscillators are
generally quite involved as they require the computation of the tangent of a new branch and second
derivatives. In this paper, a simple but efficient algorithm is presented by using a perturbation-incremental
method for switching branches at a period-doubling bifurcation of strongly non-linear autonomous
oscillators with many degrees of freedom. To switch to a new branch at a bifurcation point, a parameter is
simply turned on from zero to a small positive value so as to obtain an initial solution on the emanating
branch for subsequent continuation. The parametric value at a period-doubling bifurcation can also be
determined accurately. Furthermore, limit cycles of period 2k ðkX1Þ can be calculated to any desired
degree of accuracy.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Period-doubling sequences leading to chaos are observed in many science phenomena and
engineering problems, and have been the subject of many analytical and numerical investigations,
see Refs. [1–8]. In the computation of a new branch from a period-doubling bifurcation, one of
the main problems is to find a starting point on the emanating branch which serves for a
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subsequent tracing of the entire branch. The calculation of an emanating solution is called branch
switching. All methods for switching branches consist of the following two steps:

(I) An initial guess of a starting point on the emanating branch is to be constructed.
(II) An iteration that should converge to the new branch must be established.

Therefore, a branch switching may be regarded as a problem of establishing suitable predictors
and correctors. Popular algorithms for switching branches include the construction of a predictor
via the tangent [7,9,10] or the construction of correctors with selective properties [11]. However,
such algorithms are generally quite involved since they require the computation of second
derivatives [12].
In this paper, we present a simple and efficient method for switching branches of a period-

doubling bifurcation of strongly non-linear autonomous oscillators. With this new method,
neither the tangent of a new branch nor the second derivatives have to be calculated. A parameter
is simply turned on from zero to a small positive value so that a solution on the new branch is
obtained. Furthermore, the parametric value at which a period-doubling bifurcation occurs can
be determined accurately.
In Refs. [13–15] a perturbation-incremental (PI) method was developed, which works extremely

well for single strongly non-linear autonomous oscillators. Later, this method was extended to
calculate the limit cycles of quadratic differential systems [16,17] and coupled strongly non-linear
oscillators [18]. In this paper, the PI method is extended to the study of period-doubling
bifurcations of strongly non-linear autonomous oscillators with many degrees of freedom. The
numerical results will be compared with those from the Runge–Kutta method and the bifurcation
package AUTO 97 [19,20]. In most cases, up to only the second period-doubling bifurcation can
be obtained by using AUTO 97 whereas higher period-doubling bifurcations can be found by
using the PI method. The advantage of the PI method lies in its simplicity and ease of application.

2. The perturbation-incremental method

In this section, we outline the PI method for strongly non-linear autonomous oscillators with
many degrees of freedom. A detailed description can be found in [18].
Consider the following strongly non-linear autonomous oscillators with many degrees of

freedom in which internal resonance may occur

.xi þ giðxiÞ ¼ lfiðx1; x2;y; xN ; ’x1; ’x2;y; ’xNÞ; i ¼ 1; 2;y;N; ð2:1Þ

where gi and fi are non-linear functions of their arguments, and l is a parameter of arbitrary
magnitude. We introduce a time transformation of the form

dj
dt

¼ FðjÞ; Fðjþ 2pÞ ¼ FðjÞ; ð2:2Þ

where j is the new time. In the j domain, Eq. (2.1) has the form

F
d

dj
ðFx0

iÞ þ giðxiÞ ¼ lfiðx1;y;xN ;Fx0
1;y;Fx0

NÞ; ð2:3Þ
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where prime denotes differentiation with respect to j: Assume that the system possesses at least
one limit cycle solution for lC0; the origin of the x1– ’x1 phase plane is an interior point of the
projected limit cycle and M harmonics provide a sufficiently accurate representation, then the
limit cycle may be expressed as

x1 ¼ a cosjþ b; ð2:4aÞ

and

xi ¼
XM
j¼0

ðcij cos jjþ dij sin jjÞ; di0 ¼ 0; i ¼ 2;y;N; ð2:4bÞ

where a is the amplitude, b the bias, cij and dij reals.
The procedure of the PI method is divided into two steps. The first step is the perturbation

method. For 0ol51; the initial values for F; a; b; cij and dij defined in Eqs. (2.2) and (2.4) can be
obtained by the averaging method using generalized harmonic functions described in Ref. [21].
The second step is the parameter incremental method. Small increments are added to the initial

solution an; bn;Fn; cnij and dn
ij to obtain a neighbouring solution corresponding to l ¼ ln þ Dl;

F ¼ Fn þ DF and xi ¼ xn
i þ Dxi ði ¼ 1;y;NÞ:

Eq. (2.3) is expanded in Taylor’s series about the initial state and linearized incremental
equations are derived by ignoring all the non-linear terms of small increments as below

2Fx00
i þ F0x0

i � l
@fi

@F

� �
DFþ ðx0

iFÞDF
0

þ
XN

j¼1

�l
@fi

@xj

� �
Dxj þ

XN

j¼1

�l
@fi

@x0
j

 !
Dx0

j

þ
dgi

dxi

� �
Dxi þ ðFF0ÞDx0

i þ F2
� �

Dx00
i � fiDl

¼ �F2x00
i � FF0x0

i � giðxiÞ þ lfi; for i ¼ 1;y;N: ð2:5Þ

From Eq. (2.4), the terms Dxi; Dx0
i; and Dx00

i are expressed as, respectively,

Dx1 ¼ Da cosjþ Db; ð2:6aÞ

Dx0
1 ¼ �Da sin j; ð2:6bÞ

Dx00
1 ¼ �Da cosj; ð2:6cÞ

Dxi ¼
XM
j¼0

ðDcij cos jjþ Ddij sin jjÞ; Ddi0 ¼ 0; ð2:6dÞ

Dx0
i ¼

XM
j¼1

jðDdij cos jj� Dcij sin jjÞ; ð2:6eÞ
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Dx00
i ¼ �

XM
j¼1

j2ðDcij cos jjþ Ddij sin jjÞ; i ¼ 2; 3;y;N: ð2:6fÞ

Since F is a periodic function in j with period 2p; we write

F ¼
XM
j¼0

ðpj cos jjþ qj sin jjÞ; q0 ¼ 0; ð2:7aÞ

DF ¼
XM
j¼0

ðDpj cos jjþ Dqj sin jjÞ; Dq0 ¼ 0; ð2:7bÞ

DF0 ¼
XM
j¼1

jðDqj cos jj� Dpj sin jjÞ: ð2:7cÞ

l is usually taken as a control parameter. By applying the harmonic balance method to the
linearized incremental equation (2.5), a system of linear equations is obtained with unknowns
Da;Db; Dpj; Dqj; Dcij and Ddij in the form

AnDa þ BnDb þ Pn0Dp0 þ
XM
j¼1

ðPnjDpj þ QnjDqjÞ

þ
XN

i¼2

Cni0Dci0 þ
XM
j¼1

ðCnijDcij þ DnijDdijÞ

" #
¼ Rn ð2:8Þ

for n ¼ 1; 2;y; 2MN þ N þ 2:Derivation of the coefficients follows the same procedure as shown
in Refs. [13–15] and Rn are residue terms.
Eq. (2.8) is to be solved by an equation solver such as the Gaussian elimination procedure. The

values an; bn; pn
j ; q

n
j ; c

n
ij and dn

ij are updated by adding together the original values and the
corresponding incremental values. The iteration process continues until Rn-0 for all n; (in
practice, jRnj is less than a desired degree of accuracy). The incremental process proceeds mainly
by adding Dl increment to the converged value of l; using previous solution as initial
approximation until a new converged solution is obtained. In case a saddle-node bifurcation
occurs in the continuation, the incremental process will proceed by changing the control
parameter from l to a:
To determine the stability of a limit cycle by the Floquet method [12], we rewrite

Eq. (2.1) as

’xi ¼ yi;

’yi ¼ lfiðx1;y;xN ; y1;y; yNÞ � giðxiÞ; ð2:9Þ
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where i ¼ 1; 2;y;N: Let A be the Jacobian matrix of Eq. (2.9), i.e.,

A ¼

0 1 ? 0 0

l
@f1

@x1
�

dg1

dx1
l
@f1

@y1
? l

@f1

@xN

l
@f1

@yN

0 0 ? 0 0

l
@f2

@x1
l
@f2

@y1
? l

@f2

@xN

l
@f2

@yN

? ? ? ? ?

? ? ? ? ?

0 0 ? 0 1

l
@fN

@x1
l
@fN

@y1
? l

@fN

@xN

�
dgN

dxN

l
@fN

@yN

2
666666666666666666664

3
777777777777777777775

: ð2:10Þ

Let z
B

AR2N be a disturbance superimposed on a periodic solution of Eq. (2.9). Then

dz
B

dj
¼

1

F
AðjÞ z

B
: ð2:11Þ

Let z
B
ðiÞð0Þ ði ¼ 1; 2;y; 2NÞ be the 2N � 1 column matrix with unity at the ith row and zero else-

where. By using numerical integration, we obtain the monodromy matrix M

M ¼ z
B
ð1Þð2pÞ; z

B
ð2Þð2pÞ;y; z

B
ð2NÞð2pÞ

� �
: ð2:12Þ

The eigenvalues of M are used to determine the stability of the limit cycle. One of the
eigenvalues or Floquet multipliers of M must be unity which provides a check for the calculation.
If all the other eigenvalues are inside the unit circle, then the limit cycle under consideration is
stable; otherwise, it is unstable. A period-doubling bifurcation occurs if one of the eigenvalues
enters or leaves the unit circle through �1:

3. Period-doubling bifurcation

In the continuation of periodic solutions by the PI method, assume that a period-doubling
bifurcation is detected at l ¼ ln and the solution of the limit cycle at ln is given by

x1 ¼ an cos jþ bn; ð3:1aÞ

xi ¼
XM
j¼0

ðcnij cos jjþ dn

ij sin jjÞ; dn

i0 ¼ 0; i ¼ 2;y;N; ð3:1bÞ

F ¼
XM
j¼0

ðpn

j cos jjþ qn

j sin jjÞ; qn

0 ¼ 0: ð3:1cÞ
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To calculate the period-2 limit cycles on the emanating branch, we rescale j to 2j and replace
the original solution from M harmonics by 2M harmonics as

x1 ¼ a2 cos 2jþ a1 cosjþ a0 þ b1 sin j; ð3:2aÞ

xi ¼
X2M

j¼0

ðcij cos jjþ dij sin jjÞ; di0 ¼ 0; i ¼ 2;y;N; ð3:2bÞ

F ¼
X2M

j¼0

ðpj cos jjþ qj sin jjÞ; q0 ¼ 0: ð3:2cÞ

Then, the limit cycle at ln is expressed in the form of Eq. (3.2) as

a2 ¼ an; a1 ¼ 0; a0 ¼ bn and b1 ¼ 0;

ci2j ¼ cnij ; di2j ¼ dn

ij ; p2j ¼
pn

j

2
and q2j ¼

qn
j

2
for j ¼ 1;y;M;

and cij ¼ dij ¼ pj ¼ qj ¼ 0 for odd j: ð3:2dÞ

On the emanating branch after a period-doubling bifurcation has occurred, at least one of the
parameters a1 and b1 will become non-zero. In Eq. (3.2), if xiðjÞ ¼ ða0; a1; a2; b1; cij ; dij; pj; qjÞ
ði ¼ 1;y;N; j ¼ 1;y; 2MÞ is a periodic solution, then it can also be expressed as xþðjÞ ¼
xiðpþ jÞ ¼ ða0;�a1; a2;�b1; ð�1Þjcij ; ð�1Þjdij; ð�1Þjpj; ð�1ÞjqjÞ: In particular, if j is replaced by
pþ j in Eq. (3.2a), both a1 and b1 in x1 change sign while a0 and a2 remain the same. It follows
that if xiðjÞ is a periodic solution with b1 ¼ e > 0; the same solution can also be expressed in the
form of Eq. (3.2) with b1 ¼ �eo0 and the signs of a1; cij ; dij ; pj; qj reversed for odd j: With this
observation, we propose a simple but efficient method for branch switching of a period-doubling
bifurcation as follows. To switch to the emanating branch, Eq. (3.2) is used as an initial solution
and b1 is chosen as the continuation parameter which is simply turned on from zero to a small
positive value e > 0: (If b1 is turned on from zero to a small negative value �eo0; the same
solution as b1 ¼ e will be obtained.) The incremental process used for branch switching and
subsequent continuation is again the Newton–Raphson method used in Section 2. For an initial
solution sufficiently close to a period-doubling bifurcation, the converged solution with b1 ¼ e > 0
will be a period-2 limit cycle on the emanating branch.
For the incremental step, the terms Dx1;Dx0

1 and Dx00
1 in Eqs. (2.6a–c) are now rewritten as

Dx1 ¼ Da2 cos 2jþ Da1 cosjþ Da0 þ Db1 sin j;

Dx0
1 ¼ �2Da2 sin 2j� Da1 sin jþ Db1 cosj;

Dx00
1 ¼ �4Da2 cos 2j� Da1 cosj� Db1 sin j:

The incremental process proceeds mainly by adding Db1 increment to the converged value
of b1 using previous solution as initial approximation until a new converged solution is obtained.
(By a similar reasoning, a1 may also be chosen as the continuation parameter in the emanating
branch.)
Emanating branch of a higher period-doubling bifurcation can be traced in a similar way.

Assume that the kth ðkX1Þ period-doubling bifurcation is detected at l ¼ ln and the solution of
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the limit cycle at ln is given by

x1 ¼
X2k�1

j¼0

an

j cos jjþ
X2k�1�1

j¼1

bn

j sin jj; ð3:3aÞ

xi ¼
X2k�1M

j¼0

ðcnij cos jjþ dn

ij sin jjÞ; dn

i0 ¼ 0; i ¼ 2;y;N; ð3:3bÞ

F ¼
X2k�1M

j¼0

ðpn

j cos jjþ qn

j sin jjÞ; qn

0 ¼ 0: ð3:3cÞ

To calculate the limit cycles on the emanating branch after the kth period-doubling bifurcation,
we replace the original solution from 2k�1M harmonics by 2kM harmonics as

x1 ¼
X2k

j¼0

an

j cos jjþ
X2k�1

j¼1

bn

j sin jj;

xi ¼
X2kM

j¼0

ðcnij cos jjþ dn

ij sin jjÞ; dn

i0 ¼ 0; i ¼ 2;y;N;

F ¼
X2kM

j¼0

ðpn

j cos jjþ qn

j sin jjÞ; qn

0 ¼ 0; ð3:4Þ

where

a2j ¼ an

j for j ¼ 0; 1;y; 2k�1;

b2j ¼ bn

j for j ¼ 1; 2;y; 2k�1 � 1;

ci2j ¼ cnij ; di2j ¼ dn

ij ; p2j ¼
pn

j

2
and q2j ¼

qn
j

2
for j ¼ 0; 1;y; 2k�1M;

and aj ¼ bj ¼ cij ¼ dij ¼ pj ¼ qj ¼ 0 for odd j:

To switch to the new emanating branch, Eq. (3.4) is used as an initial solution and b1 is chosen as
the continuation parameter which is simply turned on from zero to a small positive value e > 0:
The incremental process proceeds mainly by adding Db1 increment to the converged value of b1;
using previous solution as initial approximation until a new converged solution is obtained.

4. Coupled generalized van der Pol oscillators

First we consider the coupled generalized van der Pol oscillators

.x1 þ x3
1 ¼ l½ð1� x2

1Þ ’x1 þ 2x2
; ð4:1aÞ

.x2 þ 4x2 � x2
2 ¼ l½0:5x1 þ ð1� x2

2Þ ’x2
: ð4:1bÞ
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For 0ol51; this system has been investigated in Ref. [21] using a generalized averaging method
based on the generalized harmonic functions. The analytical approximation of a limit cycle
obtained in that paper is only valid for small l: The calculation of limit cycles for arbitrary large l
was considered in Ref. [18] by using the PI method described in Section 2. From Ref. [18], an
approximate solution of Eq. (4.1) for lC0 in the form of Eq. (2.4) is given as

a ¼ 2:1148; b ¼ 0;

c20 ¼ 0:0069; c21 ¼ 1:9564; c22 ¼ 0:0776;

d21 ¼ �0:3982; d22 ¼ 0:1740;

c2j ¼ d2j ¼ 0 for j > 2;

and F ¼ 1:4954ð1þ cos2jÞ1=2: ð4:2Þ

Eq. (4.2) is an initial solution for the incremental step in which limit cycles of large l can be
obtained. Fig. 1 shows the amplitude a versus the parameter l of the limit cycles. To investigate
the stability of a limit cycle, we reduce the Jacobian matrix of Eq. (2.10) to

A ¼

0 1 0 0

�2lx1y1 � 3x2
1 lð1� x2

1Þ 2l 0

0 0 0 1

0:5l 0 �2lx2y2 þ 2x2 � 4 lð1� x2
2Þ

2
6664

3
7775

and calculate the corresponding Floquet multipliers.
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Starting from the approximate solution (4.2) with l increasing from zero, the periodic solution
follows the path containing the labels 1–5 and vanishes at lC3:1539 (label 5) which is a Hopf
bifurcation. On the other hand, starting from the approximate solution with l decreasing from
zero, the solution follows the path containing the labels 6–8 and vanishes at l ¼ 0 (label 8) which
is also a Hopf bifurcation from the trivial solution x ¼ 0: From the symmetry property of
Eq. (4.1), if ðx1; y1;x2; y2; lÞ is a solution, then ð�x1; y1;x2;�y2;�lÞ is also a solution. It follows
that if ðl; aÞ in Fig. 1 is a solution, so is ð�l; aÞ: Period-doubling bifurcation occurs at the points
labelled 1–4, 6–7 in which a Floquet multiplier either enters or leaves the unit circle at �1:
We next consider the branch switching at label 1 where l ¼ 2:7353: From the incremental step,

the explicit form of the limit cycle at that point is given in Eq. (3.1) where an; bn; cnij ; d
n
ij ; p

n
j and qn

j

are shown in Table 1. To switch to the emanating branch, this limit cycle is rewritten in the form
of Eq. (3.2) and is used as an initial solution for the continuation of the new branch. Fig. 2 shows
the parameter a2 versus the parameter l of the emanating branch. Second period-doubling
bifurcation occurs at the points labelled 10–15.
The continuation of periodic solutions obtained by the PI method is compared with that

obtained from the bifurcation package AUTO 97. In AUTO, the periodic solutions are found by
reformulating the continuation process as boundary value problems and a pseudo-arclength
procedure is imposed for the continuation of solutions. Floquet multipliers along branches of
periodic solutions are then monitored continuously for the locations of various bifurcation points.
Fig. 3 shows the emanating branch switched from label 1 using AUTO 97. If the ordinate of Fig. 2
is changed to max½x1ðjÞ
 ¼ a2cos 2jþ a1cosjþ a0 þ b1sin j for all j; the emanating branch is
the same as that of Fig. 3. It follows that the result obtained by the PI method is in good
agreement with that obtained by using AUTO 97. Up to second period-doubling bifurcation can
be located by using AUTO 97. On the contrary, higher period-doubling bifurcations can be
obtained by using the PI method. By using Eq. (3.4) as an initial solution, emanating branch from
the second period-doubling bifurcation at lC2:7664 (label 10) of Fig. 2 can be traced, as depicted
in Fig. 4. Third period-doubling bifurcation occurs at the points labelled 16–19.
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Table 1

Amplitude and bias of the limits cycle at l ¼ 2:7353 (label 1 of Fig. 1) which is near a period-doubling bifurcation, and

Fourier coefficients of x2 and FðjÞ for Eq. (3.1)

l ¼ 2:7353; a ¼ 2:3769; b ¼ 0:0799
j c2j d2j pj qj

0 0.39712 0 2.50417 0

1 0.39562 �1.19854 �0.06731 �0.40979

2 0.12317 0.18285 �0.28982 �1.84187

3 0.24654 0.04692 �0.02669 �0.01841

4 �0.09000 0.07335 �0.15181 �0.01974

5 �0.00911 0.06208 0.00666 �0.00014

6 �0.03845 �0.04005 �0.00831 �0.02528

7 �0.01167 �0.00344 �0.00378 0.00403

8 0.01647 �0.01816 0.00061 �0.00454

9 0.00251 0.00056 �0.00255 �0.00228

10 0.00777 0.00638 0.00116 �0.00184
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The parametric value at which a period-doubling bifurcation occurs can be determined
accurately by means of the PI method. For instance, in Fig. 2, we choose a period-2 limit cycle on
the emanating branch with b1 non-zero. Then, b1 is decreased gradually to zero by the incremental
process. The first period-doubling bifurcation value l1C2:73441908 is obtained at b1 ¼ 0: This
value is more accurate than that of label 1 which is obtained by the continuation of l: In a similar
way, the second period-doubling bifurcation value in Fig. 4 is found to be l2C2:76640121: The
third and fourth period-doubling bifurcation values are found to be l3C2:77248908 and
l4C2:77381023; respectively. Feigenbaum [1] showed that a sequence of period-doubling
parameters scales according to the law

lim
i-N

li � li�1

liþ1 � li

¼ d ¼ 4:66292016y : ð4:3Þ

The universal constant d is called the Feigenbaum number. From li ði ¼ 1; 2; 3; 4Þ; we determine
two values of the sequence equation (4.3),

l2 � l1
l3 � l2

C5:25342573;
l3 � l2
l4 � l3

C4:60797767

which come close to the limit d (compared with those values of the Lonenz’s fourth order system
discussed in Ref. [10, p. 272]).
From the PI method, explicit form of a limit cycle of period 2n can be obtained for arbitrary

value of l: For instance, when l ¼ 2:7472 (label 9 of Fig. 2, a point on the emanating branch
switched from label 1), the explicit form of the stable period-2 limit cycle is given in the form of
Eqs. (3.2a–c) where aj; bj; cij ; dij; pj; qj and M are shown in Table 2. Phase portrait of the limit cycle
is shown in Fig. 5 and is compared to the result of the numerical integration obtained by using the
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fourth order Runge–Kutta method. It can be seen that they are in good agreement. Parameter–
frequency curve of an emanating branch can be obtained from the equation on frequency o which
is given by o ¼ 2p=

R 2p
0 dj=F:

5. A three-dimensional model of a feedback control system

The algorithm presented in Section 3 for switching branches of a period-doubling bifur-
cation is not restricted to non-linear autonomous oscillators of the form of Eq. (2.1). It can
also be applied to a system mixed with first and second order autonomous oscillators. As a
second example, we consider the following three-dimensional model of a feedback control system
[22–24]

’x ¼ mx � y � xz; ð5:1aÞ

’y ¼ my þ x; ð5:1bÞ

’z ¼ �z þ y2 þ x2z; ð5:1cÞ

where m is the control parameter. We note that this system is invariant under the transformation
ðx; y; zÞ3ð�x;�y; zÞ: Therefore, if ðx; y; zÞ is a solution of Eq. (5.1), so is ð�x;�y; zÞ: Hence, all
solutions occur in pairs because of the transformation. A solution of Eq. (5.1) that is invariant
under this transformation is called a symmetric solution. If a solution of Eq. (5.1) is not invariant
under the transformation, it is called an asymmetric solution.
By letting ðx1; x2Þ ¼ ðy; zÞ; we rewrite Eq. (5.1) as

.x1 þ x1 ¼ m ’x1 þ ð ’x1 � mx1Þðm� x2Þ; ð5:2aÞ

’x2 þ x2 ¼ x2
1 þ ð ’x1 � mx1Þ

2x2: ð5:2bÞ

ARTICLE IN PRESS

Table 2

Fourier coefficients of x1; x2 and FðjÞ for the period-2 limit cycle at l ¼ 2:7472 (label 9 of Fig. 2)

M ¼ 5; l ¼ 2:7472; b1 ¼ 0:0059
a2 ¼ 2:3721; a1 ¼ 0:0192; a0 ¼ 0:0802

j c2j d2j pj qj

0 0.39371 0 1.24997 0

1 0.11192 �0.10051 �0.00728 �0.05952

2 0.38985 �1.17873 �0.03230 �0.20431

3 �0.00312 �0.09913 0.00193 �0.01689

4 0.12031 �0.17407 �0.14355 �0.92173

5 0.01434 0.00568 0.00682 �0.00238

6 0.23889 �0.04683 �0.01448 �0.00808

7 �0.05165 0.00577 �0.00366 �0.00202

8 �0.08322 0.00697 �0.07585 �0.00936

9 0.00415 �0.00321 0.00149 0.00298

10 �0.00993 0.05927 0.00256 �0.00054
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It can be shown easily that a Hopf bifurcation occurs at the origin of Eq. (5.1). To obtain an
approximate solution of Eq. (5.2) for small m > 0; we introduce a new parameter l to Eq. (5.2a) as

.x1 þ x1 ¼ l½m ’x1 þ ð ’x1 � mx1Þðm� x2Þ
: ð5:3Þ

Eq. (5.3) is reduced to Eq. (5.2) when l ¼ 1:
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For the first step of the PI method, we use a perturbation method similar to the KBM
method [25]. For l51; an approximate solution of Eqs. (5.3) and (5.2b) may be expressed in
the form

x1 ¼ a cosjþ lX1ðaÞ þ Oðl2Þ; ð5:4aÞ

x2 ¼
XM
j¼0

ðc2j cos jjþ d2j sin jjÞ; ð5:4bÞ

where X1 is j independent. a and j are assumed to vary with time t in such a way that they satisfy
the equations

da

dt
¼ lA1ðaÞ þ Oðl2Þ; ð5:4cÞ

dj
dt

¼ 1þ lF1ðjÞ þ Oðl2Þ; ð5:4dÞ

where F1 is a periodic function of j with period 2p: Substituting Eq. (5.4) into Eq. (5.2b) and
using the harmonic balance method, we can expressed the Fourier coefficients c2j; d2j ðj ¼
0; 1;y;MÞ in terms of the amplitude a: For instance, for M ¼ 2;

c20 ¼
a2½40� 2ð5� 4mþ 3m2Þa2 þ ð3þ 4m2 þ m4Þa4


½2� ð1þ m2Þa2
½40� 8ð1þ m2Þa2 þ ð1þ m2Þ2a4

;

c22 ¼
4a2½2� ð3þ 4mþ m2Þa2 þ a4


80� 56ð1þ m2Þa2 þ 10ð1þ m2Þ2a4 � ð1þ m2Þ3a6
;

d22 ¼
2a2½�8� 4ð�2þ mÞa2 þ mð3þ m2Þa4


�80þ 56ð1þ m2Þa2 � 10ð1þ m2Þ2a4 þ ð1þ m2Þ3a6
;

c21 ¼ d20 ¼ d21 ¼ 0: ð5:5Þ

The first and second derivatives of x1 with respect to t are

’x1 ¼ �a sin jþ lðA1 cosj� aF1 sin jÞ þ Oðl2Þ; ð5:6aÞ

.x1 ¼ �a cosj� l½2A1 sin jþ aF1 cos jþ a
@

@j
ðF1 sin jÞ
 þ Oðl2Þ: ð5:6bÞ

Substituting Eqs. (5.4), (5.6) into Eq. (5.3) and equating coefficient of order l; we obtain

2A1 sin jþ aF1 cos jþ a
@

@j
ðF1 sin jÞ � X1

¼ a m sin jþ ðsin jþ m cosjÞ m�
XM
j¼0

ðc2j cos jjþ d2j sin jjÞ

" #( )
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which implies

aF1 sin
2j ¼ a

Z j

0

ðsin jþ m cosjÞ m�
XM
j¼0

ðc2j cos jjþ d2j sin jjÞ

" #
sin j dj

þ ðam� 2A1Þ
Z j

0

sin2jdjþ X1

Z j

0

sin j dj: ð5:7Þ

Letting j ¼ 2p in Eq. (5.7), we have

A1 ¼
a

4
½mð4� d22Þ � 2c20 þ c22
: ð5:8Þ

For a steady state periodic solution, da=dt ¼ 0: Since c20; c22 and d22 are functions of a; periodic
solution with non-zero amplitude can be found by substituting these coefficients into the following
equation:

mð4� d22Þ � 2c20 þ c22 ¼ 0: ð5:9Þ

Letting j ¼ p in Eq. (5.7), we have

X1 ¼
a

2

XM
j¼0

Z p

0

ðc2j cos jjþ d2j sin jjÞðsin jþ m cos jÞ sin j dj� pm

" #
: ð5:10Þ

In particular, for M ¼ 2;

X1 ¼
ap
8
ð2c20 � c22 � 4mþ md22Þ ¼ 0: ð5:11Þ

Then, from Eq. (5.7), F1 can be expressed as

F1ðjÞ ¼
1

sin2j
m j�

sin 2j
2

� �
þ

m2

4
ð1� cos 2jÞ þ

X1

a
ð1� cosjÞ

"

�
XM
j¼0

Z j

0

ðc2j cos jjþ d2j sin jjÞðsinjþ m cosjÞ sin j dj

#
ð5:12Þ

where a can be solved from Eq. (5.9) and X1 is given in Eq. (5.10). Hence, the first order analytical
approximation to a periodic solution of Eqs. (5.3) and (5.2b) in the form of Eq. (5.4) is obtained.
We compare this approximate solution with the corresponding periodic solution of the original
system (5.1). As an illustration, let l ¼ 1; m ¼ 0:1 and M ¼ 2: From Eqs. (5.5), (5.9), (5.11) and
(5.12), we have

a ¼ 0:5948; X1 ¼ 0;

F1 ¼ 0:9792þ 0:0144 cos 2j� 0:0068 sin 2j: ð5:13aÞ
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Since ðy; zÞ ¼ ðx1; x2Þ; it follows from Eqs. (5.1b), (5.4) and (5.5) that

x ¼ � a sin j� laF1 sin j� ma cosj

¼ 0:0020 cosj� 0:0020 cos 3j� 0:5704 sin j� 0:0042 sin 3j; ð5:13bÞ

y ¼ 0:5869 cosj; ð5:13cÞ

z ¼ 0:2076þ 0:0211 cos 2jþ 0:0597 sin 2j: ð5:13dÞ

Different projections of the limit cycle generated using Eq. (5.13) are shown in Fig. 6 and are
compared to the result of the numerical integration obtained by using the fourth order
Runge–Kutta method. It can be seen that the approximate solution agrees with the numerical
solution.
We next consider the incremental step of the PI method. In this example, m is taken as the

control parameter. The linearized incremental equations of Eq. (5.2) are given as

2Fx00
1 þ F0x0

1 �
@f1

@F

� �
DFþ x0

1FDF
0 �
X2
j¼1

@f1

@xj

Dxj

�
X2
j¼1

@f1

@x0
j

Dx0
j þ Dx1 þ FF0Dx0

1 þ F2Dx00
1 �

@f1

@m
Dm ¼ �F2x00

1 � FF0x0
1 � x1 þ f1
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and

x0
2 �

@f2

@F

� �
DF�

X2
j¼1

@f2

@xj

Dxj �
X2
j¼1

@f2

@x0
j

Dx0
j þ Dx2

þ FDx0
2 �

@f2

@m
Dm ¼ �Fx0

2 � x2 þ f2;
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Table 3

Amplitude and bias of the limit cycle at m ¼ 0:4400 (label 2 of Fig. 7) which is near a period-doubling bifurcation, and

Fourier coefficients of x2 and FðjÞ for Eq. (3.1)

m ¼ 0:4400; a ¼ 1:0234; b ¼ 0:2758
j c2j d2j pj qj

0 0.8414 0 0.7845 0

1 0.4784 0.3300 �0.0025 �0.2694

2 0.0141 0.3739 0.1027 �0.0827

3 �0.1095 0.0708 0.0468 0.0080

4 �0.0661 �0.0247 0.0112 0.0218

5 �0.0153 �0.0349 �0.0054 0.0122

6 0.0111 �0.0186 �0.0074 0.0014

7 0.0128 �0.0009 �0.0030 �0.0031

8 0.0048 0.0061 0.0006 �0.0025

9 �0.0015 0.0045 0.0015 �0.0005

10 �0.0029 0.0007 0.0008 0.0006
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where f1 ¼ mFx0
1 þ ðFx0

1 � mx1Þðm� x2Þ and f2 ¼ x2
1 þ ðFx0

1 � mx1Þ
2x2: The incremental process

proceeds mainly by adding Dm increment to the converged value of m; using previous solution as
initial approximation until a new converged solution is obtained. Stability of a limit cycle can be
determined by calculating the Floquet multipliers of the following Jacobian matrix:

A ¼

0 1 0

mðx2 � mÞ � 1 2m� x2 mx1 � y1

2½x1 � mx2ðy1 � mx1Þ
 2x2ðy1 � mx1Þ ðy1 � mx1Þ
2 � 1

0
B@

1
CA;

where y1 ¼ ’x1:
Fig. 7 shows the continuation of the limit cycles of Eq. (5.2) with maxðx1Þ ¼ a þ b as the

ordinate. Starting from the approximate solution (5.13) with m increasing from 0.1, the symmetric
limit cycle is stable until we reach the critical value mnC0:3150 (label 1). At this critical point, the
symmetric periodic solution is non-hyperbolic with two of the associated Floquet multipliers at
+1. For values of m > mn; the stable symmetric limit cycle becomes unstable and two other stable
asymmetric limit cycles appear. Hence, a symmetry-breaking bifurcation occurs at mn:
As m is increased beyond mn; the periodic solution obtained by the PI method switches

automatically to the bifurcated branch containing labels 2 and 3. (If we want to keep to the
original curve with unstable symmetric limit cycles, we have to exclude the bias b in x1 ¼
a cosjþ b in the incremental step as b ¼ 0 for a symmetric limit cycle.) The first period-doubling
bifurcation occurs at mnnC0:4400 (label 2) where one of the Floquet multipliers leaves the unit
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Table 4

Fourier coefficients of x1; x2 and FðjÞ for the period-2 limit cycle at m ¼ 0:4497 (label 4 of Fig. 8)

M ¼ 8; m ¼ 0:4497; b1 ¼ 0:0271
a2 ¼ 1:031; a1 ¼ �0:0432; a0 ¼ 0:2683

j c2j d2j pj qj

0 0.8593 0 0.3901 0

1 �0.0325 �0.0322 0.0082 0.0051

2 0.4779 0.3133 �0.0066 �0.1337

3 �0.0552 �0.0161 0.0075 0.0135

4 0.0167 0.3762 0.0499 �0.0432

5 �0.0218 �0.0195 �0.0008 0.0090

6 �0.1023 0.0784 0.0239 0.0012

7 0.0055 �0.0255 �0.0056 0.0031

8 �0.0659 �0.0163 0.0074 0.0097

9 0.0178 �0.0109 �0.0042 �0.0017

10 �0.0213 �0.0303 �0.0011 0.0067

11 0.0140 0.0057 �0.0008 �0.0030

12 0.0050 �0.0202 �0.0033 0.0020

13 0.0027 0.0106 0.0014 �0.0017

14 0.0110 �0.0056 �0.0021 �0.0007

15 �0.0050 0.0060 0.0015 0.0001

16 0.0070 0.0028 �0.0005 �0.0013
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circle through �1: Information of the limit cycle at mnn is given in Table 3. To switch to the
emanating branch, this limit cycle is rewritten in the form of Eq. (3.2) and is used as an initial
solution for the continuation of the new branch. Fig. 8 shows the emanating branches from the
first and second period-doubling bifurcations with max½x1ðjÞ
 as the ordinate. For the emanating
branch from the kth period-doubling bifurcation, max½x1ðjÞ
 ¼

P2k

j¼0 aj cos jjþ
P2k�1

j¼1

bj sin jj for all j: (If amplitude is used as the ordinate instead of max½x1ðjÞ
 in Fig. 8, the
emanating branches are almost indistinguishable from the original curve.) Second period-
doubling bifurcations occur at mC0:4767 (label 5) and mC0:4936 (label 6). In this case, both the
PI method and AUTO 97 fail to detect third period-doubling bifurcation.
Information of the period-2 limit cycle at m ¼ 0:4497 (label 4) is given in Table 4. Phase portrait

is shown in Fig. 9 and is compared to the result of the numerical integration obtained by using the
fourth order Runge–Kutta method. It can be seen that they are in good agreement.

6. Conclusion

A simple but efficient algorithm for branch switching of period-doubling bifurcations of
strongly non-linear autonomous oscillators with many degrees of freedom is described by using
the perturbation-incremental method. When a period-doubling bifurcation is detected, the
periodic solution at that bifurcation point is extended from M harmonics to 2M harmonics. A
parameter b1 is then turned on from zero to positive in order to obtain a solution on the
emanating branch for subsequent continuation. Therefore, the calculation of tangent of the
emanating branch and the second derivatives which is quite involved can all be avoided. Period-
doubling bifurcation value can also be determined accurately by decreasing b1 gradually to zero.
Compared with the results obtained by using the bifurcation package AUTO 97, it is found that
even higher period-doubling bifurcations can be obtained by using the PI method. Limit cycles
obtained by using the PI method are compared with those from the Runge–Kutta method and
they are in good agreement. The advantage of the PI method lies in its simplicity and ease of
application.
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